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In order to properly cover the material from Activity 1.2.1 from DL2, I have made this
document to cover the quantitative relationships governing different forms of energy change.

The idea is this: given a certain substance, how much does the temperature/mass change
when we put in a specific amount of energy? We can answer this in the context of our
3-Phase Model by looking more closely at our phase diagrams.
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Figure 1: The process shown is a pure gas rising in temperature as heat is
transferred to the generic substance. TV P and TMP are the vaporization and

melting temperatures respectively.

In the above graph, we have some arbitrary gas in pure phase that is increasing in
temperature as we add energy. Notice that the substance follows a linear path – if you
remember your slope equation for a line, rise/run, we can write

∆T

∆E
= slope constant ≡ 1

C

where I define 1/C to be a constant, the slope. Furthermore, rewriting this gives

∆E = C∆T
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In addition, if the only energy being transferred to our system is through heat, we have
that

∆Eth = Q = C∆T

We now have a relationship between the change in energy and the change in temperature.
They are linearly related by the constant C, which we can call the heat capacity.

How do we interpret this constant? We see from our equation that the units of C have
to be Joules/Kelvin in order to give energy. So, we can think of heat capacity as the energy
needed to raise our specific amount of substance by 1◦ K. Heat capacity depends on

1. What kind of substance we are looking at.

2. How much of that substance there is.

Now, one might say: I don’t like working with a constant that depends on how much of
this substance we have! Well, let’s create a constant called specific heat, given by “little c”.
Specific heat is how much energy needed to heat a unit mass of a particular substance. The
relationship between C and c is given by

c =
C

m
=⇒ C = mc

Note that if we wanted to use moles instead of mass to measure our amount, we can just
switch the m with n (the number of moles).

Let’s look at a different process in the phase diagram now – say one of the phase transition
regions. In the diagram below, let’s say our substance is changing from a liquid to a gas.
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Figure 2: Here, a substance is changing phase; it is in mixed phase, going from a
liquid to a gas as heat is transferred to the system.

If we are in mixed phase, what is true? We know the following:
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• The temperature is not changing, and the system is in thermal equilibrium.

• The change in energy is not in Eth, but rather Ebond.

• As bonds break, we know that either a phase transition or chemical reaction is oc-
curring, so the amount of a particular phase or substance must be going down while
another goes up (that is, ml decreases while mg increases).

So, given this information, we can make a formula for Ebond like we did for Eth. But look
back at our new phase diagram – there is no temperature change! So, we cannot just use
the graph because ∆Ebond does not depend on ∆T .

What was our indicator for Eth change? ∆T . We observed that ∆E is related to ∆T by
a constant. What is our indicator for Ebond change? ∆m! So it might not be crazy to think
that there is also a linear relationship between ∆Ebond and ∆m, as in

∆Ebond = h∆m

where h is just some constant.
Now, we know that Ebond is the energy associated with breaking bonds, however there

is also an energy associated with breaking bonds for a particular configuration of molecules,
kind of like how we have a unique heat capacity for a given substance! Let’s call this quantity
∆H, the heat of vaporization/melting, or in chemical reactions heat of formation.

If we assume that ∆H is analogous to heat capacity, then our constant h = ∆H in our
above equation, so

∆Ebond = ∆H ∆m

Note: ∆H gives the heat of vaporization/melting for an entire phase change, so is the
amount of energy needed to completely vaporize/melt a unit of the substance (units of ∆H
are Joules/kilograms).

In conclusion, the following equations are true for cases within our 3-Phase Model of
Pure Substances, and now include signs to maintain generality:

∆Eth = ±|C∆T |, ∆Ebond = ±|∆H ∆m|

Remember: either of these energy changes are positive if heat or work is going into the
system. Otherwise, the signs are negative, as energy is leaving the system.
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